Fast evaluation of protein dynamics from deficient 15N relaxation data
byŁukasz Jaremko, Mariusz Jaremko, Andrzej Ejchart, Michał Nowakowski
Journal of Biomolecular NMR volumeYear:2018DOI:10.1007/s10858-018-0176-3
Abstract
Simple and convenient method of protein dynamics evaluation from the insufficient experimental 15N relaxation data is presented basing on the ratios, products, and differences of longitudinal and transverse 15N relaxation rates obtained at a single magnetic field. Firstly, the proposed approach allows evaluating overall tumbling correlation time (nanosecond time scale). Next, local parameters of the model-free approach characterizing local mobility of backbone amide N–H vectors on two different time scales, S2 and Rex, can be elucidated. The generalized order parameter, S2, describes motions on the time scale faster than the overall tumbling correlation time (pico- to nanoseconds), while the chemical exchange term, Rex, identifies processes slower than the overall tumbling correlation time (micro- to milliseconds). Advantages and disadvantages of different methods of data handling are thoroughly discussed.
Keywords
15N magnetic relaxationProtein dynamicsModel-free approachRatio, product, and difference of relaxation ratesSemi-quantitative analysis of 15N relaxation data